The ring of integer-valued polynomials of a semi-local principal-ideal domain

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ring of Integer-valued Quasi-polynomials

The paper studies some properties of the ring of integer-valued quasi-polynomials. On this ring, theory of generalized Euclidean division and generalized GCD are presented. Applications to finite simple continued fraction expansion and Smith normal form of integral matrices with integer parameters are also given.

متن کامل

Integer-valued Polynomials

Let R be a Krull ring with quotient field K and a1, . . . , an in R. If and only if the ai are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b1, . . . , bn in R an interpolating integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S is an infinite subring of a discrete valuation ring Rv with quotient field K a...

متن کامل

Integer-valued Polynomials on Algebras

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...

متن کامل

Integer-valued Polynomials on Algebras a Survey

We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature. (2000 Math. Subj. Classification: Primary 13F20; Secondary 16S50, 13B25, 13J10, 11C08, 11C20)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1991

ISSN: 0024-3795

DOI: 10.1016/0024-3795(91)90108-9